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Abstract. Eigenvalue problems serve as fundamental substrates for applications in large-scale
scientific simulations and machine learning, often requiring computation on massively parallel plat-
forms. As these platforms scale to hundreds of thousands of cores, hardware failures become a
significant challenge to reliability and efficiency. In this paper, we propose and analyze a novel fault-
tolerant eigenvalue solver based on erasure-coded computations – a technique that enhances resilience
by augmenting the system with redundant data a priori. This transformation reformulates the orig-
inal eigenvalue problem as a generalized eigenvalue problem, enabling fault-oblivious computation
while preserving numerical stability and convergence properties. We formulate the augmentation
scheme, establish the necessary conditions for the encoded blocks, and prove the relationship be-
tween the original and transformed problems. We implement an erasure-coded TraceMin eigensolver
and demonstrate its effectiveness in extracting eigenvalues in the presence of faults. Our exper-
imental results show that the proposed solver incurs minimal computational overhead, maintains
robust convergence, and scales efficiently with the number of faults, making it a practical solution
for resilient eigenvalue computations in large-scale systems.
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1. Introduction. Eigenvalue problems are computationally intensive and arise
in various domains, often requiring solutions on scalable parallel and distributed plat-
forms. The high complexity and massive scale of such platforms makes fault tol-
erance a critical consideration. Traditional parallel computations typically rely on
checkpoint-restart mechanisms for fault tolerance. However, these techniques present
two major challenges: (i) they require consistent checkpoints, which may incur sig-
nificant overhead due to rollback – especially in scalable parallel programs that aim
to minimize global synchronization; and (ii) they demand substantial I/O capacity
and bandwidth to store checkpoints in persistent storage or sufficient interconnect
bandwidth for in-memory checkpoints.

An alternative approach to fault tolerance involves detecting and mitigating fail-
ures using active replicas in conjunction with a consensus procedure. Active replicas
are typically used in real-time systems, where worst-case execution times must be
guaranteed, and rollback/ replay schemes may violate such guarantees. However, ac-
tive replicas have high resource overhead, as each computation must be executed by
s+ 1 replicas to tolerate s faults.

Erasure coding is frequently used in storage systems to provide efficient and scal-
able fault tolerance by adding appropriately coded redundancies to overcome data
erasures. These codes can be conceptualized as multiplying a data vector of size n
by a coding matrix consisting of n columns and m > n rows. If any n of the m
rows of the coding matrix are guaranteed to be linearly independent, the vector re-
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sulting from this matrix-vector product contains sufficient redundancies to tolerate
up to m − n erasures. Specifically, in the event of up to m − n erasures, the re-
maining n elements can be used with the corresponding n × n non-singular matrix
corresponding to the non-erased rows of the coding matrix to recover the original
n data items. Building on this concept of erasure-coded storage, in prior work, we
introduced the notion of erasure-coded computation for solving linear systems. In
this work, the input problem is augmented with suitably coded blocks, the augmented
problem instance is solved on a faulty parallel platform in a fault-oblivious manner,
and the solution is recovered from the results on the non-faulty processors using an
inexpensive procedure [10, 11, 20].

In this paper, we present a novel formulation of erasure-coded computations for
solving eigenvalue problems. In contrast to solving linear systems, naively augmenting
the input matrix with row and column blocks alters the spectrum, with no known
inexpensive methods of recovering the original eigenvalues.

We focus here on faults that cause erasure (or deletion) of data, along with fail-
stop failure of the processors on which the corresponding part of the computation may
execute. We present a novel erasure-coded computation scheme for fault-tolerant so-
lution of eigenvalue problems, Ax = λx, for given matrix A. Unlike linear systems,
naively adding a coding block to a given matrix A changes its eigenvalues, and there
are no known computationally inexpensive ways of recovering the original eigenval-
ues from these perturbed eigenvalues. To address this, we transform the original
eigenvalue problem to an equivalent (in terms of eigenvalues) generalized eigenvalue
problem Ãx̃ = λB̃x̃, where Ã is an augmented form of matrix A and B̃ is an en-
coded identity matrix. The resulting augmented problem can be solved using most
off-the-shelf eigensolvers in a fault-oblivious manner; i.e., in the event of a fail-stop
failure, the remaining processors simply proceed with their computation oblivious to
the faults.

We present detailed proofs establishing the equivalence between the eigenvalues
of the original problem and those of a reformulated generalized eigenvalue problem
(Theorem-3.3). We analyze the impact of faults on the generalized problem and
provide methods to recover eigenvalues in the presence of such faults. Although our
primary fault model assumes fail-stop failures - analogous to erasures in storage - other
fault types (e.g., transient or soft faults) can be handled similarly using predicates to
detect and isolate faulty states.

We solve the reformulated problem using TraceMin [12, 17, 18] and show that
our approach achieves a convergence behavior comparable to the fault-free case, even
under random erasures (randomly selected row-column removals).

Our experiments quantify the impact of different fault models on convergence, the
overhead introduced by our erasure-coded eigensolver, the benefits of optimizations,
and sensitivity to various parameters, including approximation levels in adaptive code
construction. These results demonstrate the efficacy of our approach in solving eigen-
value problems in fault-prone computing environments.

In summary, our contributions are as follows.
(i) A novel reformulation of the eigenvalue problem as an equivalent general-

ized eigenvalue problem with augmented matrices, enabling fault-oblivious
computation.

(ii) Low-overhead erasure-coding schemes for fault-tolerant eigenvalue computa-
tions.

(iii) Application of erasure coding to both the Power Method and TraceMin,
demonstrating the generality of our approach.
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(iv) Performance comparison with checkpoint-restart techniques, highlighting the
advantages of our erasure-coded solver.

(v) Analysis of both single- and multifault scenarios, demonstrating robustness
across diverse fault conditions.

2. Related Research. Accurate computation of eigenvalues is an essential part
of ML applications operating in hardware environments ranging from embedded de-
vices in harsh environments to data-center scale solvers. Fault tolerance techniques in
these environments can be classified into two broad categories: system-supported and
algorithm-based. System-supported methods include checkpoint-restart [1], active
replicas [16], and deterministic replay [3]. Checkpoint-restart techniques periodically
save the application state into persistent storage (disks or replicated in-memory).
This requires the identification of consistent checkpoints and the capacity for persis-
tent storage in terms of space and bandwidth. Active replicas execute computations
on multiple processors – these replicas are monitored for potential faults, and a consen-
sus protocol identifies fault-free executions. Algorithm-based fault tolerance (ABFT)
methods modify the base algorithm to embed redundant computations to render the
overall computation resilient to faults [2, 4, 5, 6, 7, 9, 15]. While ABFT methods often
have advantages over system-supported methods in resource overheads, they must be
specifically designed for each algorithm, leverage specific aspects of the algorithm and
fault characteristics, and typically require intricate correctness proofs. Our method
can be viewed as the first method for fault-tolerant eigenvalue computations in the
broad class of ABFT methods. It leverages results from coding theory (sparse codes),
linear algebra (augmented problem formulation, correctness proofs), randomized tech-
niques (leverage score sampling), and efficient solvers (conditioning, convergence), to
deliver a novel high-performance fault-tolerant eigensolver.

3. Erasure Coded Eigenvalue Solver. Our proposed solution adds redundant
rows and columns to the matrix to render it tolerant to faults with any solver. In
contrast to linear system solvers, adding a row (or column) to a matrix, even if it
is in the row-subspace of the matrix, changes its eigenvalues. For this reason, a key
challenge for us is the reformulation of the eigenvalue problem so that the addition
of a coding block still allows for inexpensive recovery of the original eigenvalues. In
this section, we present a novel reformulation of the eigenvalue problem, along with
recovery algorithms.

3.1. Formulating an Erasure Coded Eigensolver. A standard symmetric
eigenvalue problem can be written as:

(3.1) Ax = λx,

where A ∈ Rn×n is a symmetric matrix, λ is an eigenvalue, and x is the corresponding
eigenvector. A generalized eigenvalue problem is

(3.2) Ax = λBx,

which reduces to the original problem when B is the identity matrix (In) of size n×n.
Let E be an n × k matrix we call the coding matrix. In our design, the coding

matrix E should have Kruskal row rank of k [14] to ensure tolerance of up to k faults
that occur anywhere in the system. We derive the recovery equation for our erasure
coding as:

(3.3) x∗ = x+ Er.
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Here, x is the eigenvector of the original eigenvalue problem 3.1 of dimension n, and
r is the redundant part (related to fault-tolerance) of dimension k We can substitute
the recovery equation 3.3 into original eigenvalue system 3.1 to get

(3.4) A(x+ Er) = λ(x+ Er)

Recall that, Kruskal row rank k of a matrix implies that any subset of k rows of the
matrix is guaranteed to be linearly independent. Now, as we want some redundancy,
we add another set of linear constraints.

(3.5) ET [Ax∗ = λx∗]

Putting 3.4 and 3.5 together we have,

(3.6)

{
A(x+ Er) = λ(x+ Er)

ETA(x+ Er) = λET (x+ Er)

After grouping the terms of the above 3.6, we arrive at the augmented eigenvalue
problem:

(3.7)

[
A AE

ETA ETAE

] [
x
r

]
= λ

[
I E
ET ETE

] [
x
r

]
We more compactly write this as the following generalized eigenvalue problem:

(3.8) Ãx̃ = λB̃x̃,

where, Ã, B̃ are the augmented matrices

(3.9) Ã =

[
A AE

ETA ETAE

]
, B̃ =

[
I E
ET ETE

]
, x̃ =

[
x
r

]
and x̃ is the eigenvector of the augmented system.

This generalized eigenvalue problem is singular. In this case, this is because there
exists a vector x̃ such that Ãx̃ = 0 and B̃x̃ = 0 for any vector x̃ in the joint null-space
of Ã and B̃.

Lemma 3.1 (Null Space in Augmented Generalized Eigenvalue System). The

matrices Ã and B̃ from (3.9) have a joint null space

[
E
−Ik

]
Proof. Recall Ã and B̃ are (n + k) × (n + k). Note that B̃ has rank n since the

last k rows are a linear combination of the previous n, and the first n rows have an
identity block. Therefore, the joint null space must have rank at most k. The matrix[
E
−Ik

]
has rank k and

(3.10) Ã

[
E
−Ik

]
= 0, B̃

[
E
−Ik

]
= 0.

To make the structure inside the singular pencil clear, we next show that the
pencil (Ã, B̃) is strictly equivalent to a simple case related to the eigenvalues of A
alone.
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Theorem 3.2 (Matrix Pencil Equivalence). Let Ã, B̃ be from (3.7). Then the
pencil Ã− λB̃ is strictly equivalent to the pencil[

0 0
0 A(I + EET )

]
− λ

[
0 0
0 (I + EET )

]
.

Since the matrix (I + EET ) is non-singular for any E, a subset of eigenvalues and
eigenvectors of the generalized eigenvalues of (Ã, B̃) will be related to the eigenvalues
of A.

Proof. Let M =

[
E I
−Ik E

]
, M is invertible with the last n columns orthogonal

to the first k. Then M−1(Ã− λB̃)M is a strict equivalence transformation and

M−1(Ã− λB̃)M =

[
0 0
0 A(I + EET )

]
− λ

[
0 0
0 (I + EET )

]
.

For a quick understanding of why this form follows, note that M =
[
Z Y

]
where Z

is the basis for the joint null space of A and B and ZTY = 0, so these are orthogonal
subspaces. A straightforward elementary justification is possible through the closed
form calculation of

M−1 =

[
ET (I + EET )−1 −(I + ETE)−1

(I + EET )−1 E(I + ETE)−1

]
.

The two trickier steps are showing ET (I + EET )−1 + (I + ETE)−1ET = 0 (which
shows up in the 2, 1 block) and (I+EET )−1+E(I+ETE)−1ET = I (which shows up
in the 2, 2 block). It suffices to look at the computation for Ã alone as the structure
of Ã and B̃ are the same with A replaced by an identity block.

For the trailing size n block, we then have the generalized problem A(I+EET )y =
λ(I + EET )y, which is a similarity transform of the eigenvalues of A through (I +
EET )−1A(I + EET ).

Since the singular subspace of the generalized eigenvalue problem can have any
eigenvalues when treated computationally the augmented eigenvalue system (as shown
in 3.8) will have some spurious eigenvalues that correspond to the vectors in the null-
space of

[
I E

]
. These can be easily detected.

Example. We illustrate this encoding and detection of spurious eigenvalues using
a simple example. Let:

A =


2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2

 E =


0.98 0.42
0.13 0.39
0.53 0.85
0.87 0.93


The eigenvalues of A are (to four digits)

0.382 1.382 2.618 3.618

One computation of the generalized eigenvalues of eigenvectors of Ã and B̃ yielded:

0.382 0.6012 1.382 2.618 3.6031 3.618
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−0.1696 0.1728 −0.2473 −0.258 −0.4414 0.4409
−0.5019 0.3572 0.2104 0.1836 0.2757 −0.2745
−0.8198 0.7163 0.7065 0.3035 0.3842 −0.3852
−0.7187 0.7106 0.6918 0.3455 0.1653 −0.1643
−0.3552 0.2522 0.4895 0.8502 0.879 −0.8793

1.0 −1.0 −1.0 −1.0 −1.0 1.0


(each column of the matrix is an eigenvector with the associated eigenvalue above
it). The two spurious eigenvalues can be detected by computing

[
I E

]
r for each

eigenvector and checking for zero (or a very small norm, more generally). For example,
0.1728
0.3572
0.7163
0.7106

+ E

[
0.2522
−1

]
= 0

We summarize as follows. Given any generalized eigenvector x̃ = [ xr ] of (Ã, B̃),
then compute x+ Er and if this is zero, then it is a spurious solution.

In principle, the singularity gives us the fault tolerance we seek. The eigenvalue
problem remains valid with up to k elements of x set to arbitrary values. However,
the singular pencil poses a variety of computational issues that are difficult to resolve.
Consequently, we use this idea for inspiration and consider ideas more closely related
to those used in [11]. This involves replacing the erased row-column pairs with the
corresponding coding blocks from the augmented matrices Ã and B̃ when a fault
occurs.

3.2. A More Practical Fault Handling and Solution Recovery Idea. The
idea for our more practical solver is that we treat the blocks R = AE, S = ETAE,
T = ETE as redundancy that can be used whenever it is needed by a fault. (Recall
that we target symmetric A so (AE)T = ETA.) Then, when fault occur, we substitute
these into the system for the missing parts. Then we initiate an eigensolver on A. In
the event of a fault, a subset of rows or columns in the matrices A and B are “erased”
in that we lose access to them. Note that we consider only fail-stop failures; that is,
in the event of a failure, a compute node halts both computation and communication.

After erasures, we reconstitute the matrices A′ and B′ by substituting the erased
rows and columns with the corresponding rows and columns from the blocks of
E,R, S, T , as shown in Figure 1, and proceed with the eigenvalue solver. For example,
if rows i1 to i2 of matrix A are deleted, we replace these rows and their corresponding
columns in the erased system (represented as Ar) with the pre-computed erasure-
coded blocks from ETA and AE, respectively, to preserve symmetry. Similarly, the
erased rows and columns of matrix B, are replaced with the corresponding rows and
columns of ETB and BE. The intersecting square-block from (i1, i1) to (i2, i2) of B
is replaced by the square block of size (i2− i1)× (i2− i1) of E

TBE of the augmented
matrix B̃ as illustrated in Figure 1. Once the matrices have been reconstituted, the
solver resumes execution.

Example. Continuing our previous example, we have A and E as before. We
use the recovery information

RT =

[
1.83 −1.25 0.06 1.21
0.45 −0.49 0.38 1.01

]
S =

[
2.7154 1.4574
1.4574 1.2602

]
T =

[
2.0151 1.7219
1.7219 1.9159

]
.

Suppose as we were solving an eigenvalue problem Ax = λx, we had a failure in the
3rd row. Then we’d assemble the new matrix by replacing the 3rd row and column
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Fig. 1: Erasure-Coded TraceMin Solver Flow.

with information from the 1st row of RT . (There is nothing special about this row,
we could have used the 2nd as well, but our convention is to use the first unused row.)
This yields the new generalized eigenvalue problem with A′x = λB′x

A′ =


2.0 −1.0 1.83 0.0
−1.0 2.0 −1.25 0.0
1.83 −1.25 2.7154 1.21
0.0 0.0 1.21 2.0

 B′ =


1.0 0.0 0.98 0.0
0.0 1.0 0.13 0.0
0.98 0.13 2.0151 0.87
0.0 0.0 0.87 1.0


The generalized eigenvalues and vectors of this new system are

0.382 1.382 2.618 3.618
0.7405 1.2889 1.2889 −0.7405
−0.454 0.4629 −0.2806 −0.749
−1.1349 −0.7014 −0.7014 1.1349
0.6156 0.0087 1.2117 −1.3591

 .

To recover the eigenvectors of the original system, we need to use the “recovery
equation x+Er”. In this case – when applied to each eigenvector as a matrix equation
– this becomes
0.7405 1.2889 1.2889 −0.7405
−0.454 0.4629 −0.2806 −0.749

0 0 0 0
0.6156 0.0087 1.2117 −1.3591

+


0.98
0.13
0.53
0.87

 [
−1.1349 −0.7014 −0.7014 1.1349

]

=


−0.3717 0.6015 0.6015 0.3717
−0.6015 0.3717 −0.3717 −0.6015
−0.6015 −0.3717 −0.3717 0.6015
−0.3717 −0.6015 0.6015 −0.3717


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Thus, we recover the original eigenvectors from the generalized eigensystem.
To describe and analyze this process formally, we will permute the system so that

C is the part of A that is non-faulty and c are the corresponding coefficients of x that
were not erased. The faulty components will be placed at the end of the matrix for
analysis as in

(3.11) Ax = λx =⇒
[
C F1

FT
1 FT

2

] [
c
f

]
= λ

[
c
f

]
.

The matrices FT
1 and FT

2 correspond to the erased rows, as well as the components
f . Suppose there are ℓ ≤ k failed or erased rows. The matrix C just consists of the
rows and columns of A that are still correctly executing. We are going to replace the
rows and columns corresponding to F1 with F2 with the redundant data. Let

(3.12) RT = ETA =

[
ZT

Y T

]
=

[
ZT
C ZT

F

Y T
C Y T

F

]
and ET =

[
ET

Z

ET
Y

]
=

[
ET

ZC ET
ZF

ET
Y C EY F

]
be a partition of the redundancy data into the first ℓ rows of RT and the later rows
of R, along with a corresponding partition of the first ℓ rows of the matrix ET ; the
column partition is given by the correct and faulty rows and columns of the matrix A.
Also, let SZ and TZ be the first ℓ rows and columns of S and T , respectively. Then
the reconstituted eigensystem is

(3.13)

[
C ZC

ZT
C SZ

] [
c
r

]
= λ

[
I ECZ

ET
CZ TZ

] [
c
r

]
.

Here r are components of the solution that are not part of the original solution but
need to be included into the solve. (The values in r correspond to the 3rd row of our
eigenvector matrix above.)

One may question the need for a coding block, as opposed to replacing erased parts
of matrix A with corresponding blocks of A itself. The problem with this approach is
that the matrix A will have to be replicated (k + 1)-fold to tolerate k faults. This is
infeasible for problems that operate close to limit of memory.

We now show that this process leaves the eigenvalues unchanged and permits us
to recover the eigenvectors. We also simplify notation and assume we use all of the
redundant data. We can do this without loss of generality because ZC , SZ , and TZ

only use the information corresponding to the first ℓ columns of E.

Theorem 3.3 (Eigenvalue Equivalence). Consider a eigenvalue problem Ax =
λx where A is symmetric. Let E be a coding matrix with Kruskal row rank k. Let
R = AE, S = ETAE, and T = ETE. Suppose there are k faults, which result in loss
of k-rows and columns of A. Without loss of generality, we have the problem permuted
so these are the last k rows and columns as in 3.11. Let

E =

[
EC

EF

]
and R =

[
RC

RF

]
correspond to a partition of the data in E and Z into the same set of correct and
faulty rows. Then the generalized eigenvalues of A′y = λ′B′y, that is

(3.14)

[
C RC

RT
C S

] [
c
r

]
= λ′

[
I EC

ET
C T

] [
c
r

]
,

are identical to those of A. Also, the eigenvectors are related by a simple linear
transformation.
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Proof. We will show that if y = [ cr ] is a generalized eigenvector of 3.14 with
eigenvalue λ′ then

(3.15) v =

[
vc
vf

]
=

[
c+ ECr
EF r

]
=

[
I EC

0 EF

]
︸ ︷︷ ︸

=M

[
c
r

]

is an eigenvector of A with the same eigenvalue. Because E has Kruskal rank k,
the matrix EF is k × k and invertible, so the transformation matrix M is invertible,
which is the crux of the argument. Let A′y = λ′B′y be the generalized eigenvalue
problem (3.14). Since My = v with A′ = MTAM and B′ = MTM then we arrive at
Av = λv.

3.3. Implementing An Erasure-Coded Power Method. For the erasure-
coded variant of the Generalized Power Method, we compute the erasure coding ma-
trix E. We then derive the augmented coding blocks R,S, T from matrix A and E.
We now show two different implementations of a power method. The first is one
that exhibits the ideas clearly. The second is one that illustrates how a practical
implementation might function. To be more concrete, in the first, we use matrices A
and B to represent the operations that would be performed with modification to the
matrices. In the second, we’ll illustrate how these operations can be optimized using
the structure of the problem.

The preceding theory dealt with the eigensystems that arise. When we move to
these algorithms, we need to consider how to reinitialize the values of XF after a fault
occurs. We assume that the values XF are totally lost. First, if an implementation
periodically computes and retains the quantity ETX, then we can always extract
the faulty missing elements from this matrix – this is a simple calculation related to
the ideas from [19]. However, since this has the flavor of checkpointing, we do not
do it. Although it may seem like we should be able to utilize the non-faulty values
XC to derive improved values for XF , we were unable to make this idea successful.
Consequently, when a fault occurs, we replace the values XF with random data. This
appears to work the best in our experiments.

The power method for solving the generalized eigenvalue problem for matrices
A and B involves multiplying both on the left and right by an orthogonal matrix
Q, as outlined in Algorithm 3.1. At each iteration, a QR factorization is performed
to compute the orthonormal matrix Q. Similar to the standard power method, the
sequence of vectors X is updated by multiplying the orthogonal matrix Q with the
approximate eigenvectors U obtained from solving the projected eigenproblem defined
by the matrices AQ = Q⊤AQ and BQ = Q⊤BQ. Convergence is assessed by comput-
ing the relative residual rrel and comparing it against a predefined tolerance ε for the
eigenvector corresponding to the dominant eigenvalue of the matrix pencil (A,B).

In the generalized power method, the key step is an iteration is computing
B−1AX. The structure of our matrix B makes this easy in the event of any fault.
Recall that

B =

[
I EC

ET
C ETE

]
.

This means it is – at most – a rank k update to the identity matrix B. Consequently,
the matrix has a simple closed form inverse that can be used to implement an efficient
solve

B−1 =

[
I + EC(E

TE − ET
CEC)

−1ET
C −E(ETE − ET

CEC)
−1

−(ETE − ET
CEC)

−1ET (ETE − ET
CEC)

−1

]
.
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Algorithm 3.1 Erasure-Coded Generalized Block Power Method with QR Subspace
Iteration

Require: Symmetric matrix A ∈ Rn×n, initial matrix X0 ∈ Rn×k, tolerance ε, re-
dundancy information E,R, S, T

Ensure: Approximate eigenpairs (Λ, X) where AX ≈ ΛBX
1: Initialize X ← X0

2: Initialize B ← I
3: for i = 1, 2, ... until convergence do
4: if Fault Occurs then
5: Replace the faulty rows and columns of A with any unused rows and col-

umns of R and the intersection of rows and columns with block S to reconstitute
A′

6: Replace the faulty rows and columns of B with any unused rows and col-
umns of E and the intersection of rows and columns with block T to reconstitute
B′.

7: Use the reconstituted A′ and B′ as A and B respectively and continue the
solver; A← A′; B ← B′

8: Set any failed rows of X to random data and orthogonalize with a QR
factorization.

9: end if
10: Y ← AX
11: Z ← B−1Y ▷ Solve BZ = AX
12: [Q,∼]← qr(Z) ▷ Thin QR factorization
13: AQ ← Q⊤AQ, BQ ← Q⊤BQ
14: [U,D]← eig(AQ, BQ) ▷ Solve small generalized eigenproblem
15: Sort eigenvalues Λ in D in descending order; reorder U accordingly
16: Xnew ← QU
17: Compute residual r ← ∥AXnew −BXnewΛ∥F
18: Compute relative residual rrel ← r

∥A∥F

19: if rrel < ε then
20: break
21: end if
22: X ← Xnew

23: end forreturn X,Λ

Since E =
[
EC

EF

]
, we have ETE − ET

CEC = ET
FEF . This matrix is always invertible

because E has Kruskal row rank k. Also, the inverse here only occurs for a small
k × k block, (ETE − ET

CEC)
−1, which is repeated through all the factors and could

be treated practically with either a small inverse or a small LU factorization.
The result is a set of operations that implement these operations without explicitly

reforming the matrix A. The auxiliary procedures Aop, Bop, and invBop, which are
invoked in Algorithm 3.2, are specified in Algorithm 3.3. The key step is compute a
Cholesky factor with all the solves.

3.4. Implemented An Erasure-Coded TraceMin. Our erasure-coded eigen-
solver builds upon the TraceMin algorithm described in [17], and is detailed in Algo-
rithm 3.4, which outlines the procedure for handling faults.

The eigenvectors X of the original eigenvalue problem are recovered from the
eigenvectors X ′ of the reconstituted system, computed as X in Algorithm 3.4.
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Algorithm 3.2 Erasure-Coded Generalized Block Power Method with QR Subspace
Iteration

Require: Symmetric matrix A ∈ Rn×n, initial orthogonal matrix X0 ∈ Rn×k, toler-
ance ε, redundancy information E(0), Z(0), S(0), T (0) up to k faults.

Ensure: Approximate eigenpairs (Λ, X) where AX ≈ ΛBX
1: Initialize X ← X0, F = ∅ (the set of faulty indices),
2: E ← getErasureCodedMatrix(n, k) ▷ generate encoding matrix
3: R← A · E, S ← E⊤A · E, T ← E⊤E ▷ generate coding blocks
4: for i = 1, 2, ... until convergence do
5: if a new fault occurs then
6: Let Fnew be the set of new faulty indices
7: Add the faculty indices to F (unless F exceeds k indices, in which case

terminate with an error that the fault capacity was exceeded).
8: Set EC , ZC to the first |F| columns of E(0), Z(0)

9: Set S, T to be the first |F| × |F| block of S(0), T (0)

10: Compute a factorization of T − ET
CEC for applications of (T − ET

CEC)
−1

11: Set X(Fnew, :) = random normal entries
12: Set A(Fnew, :) = A(:,Fnew) = 0 (or implicitly via the fault)
13: end if
14: if Fnew ̸= ∅ then
15: Update fault set F←sort(F ∪ Fnew); EF←E[F , :], G←chol(EF⊤EF )
16: end if
17: Y ← Aop(A,R, S,X,F)
18: Z ← invBop(G,E,EF, Y,F) ▷ Solve BZ = AX
19: [Q,∼]← qr(Z) ▷ Thin QR factorization
20: AQ← Q⊤ ·Aop(A,R, S,Q,F) BQ← Q⊤ · Bop(E, T,Q,F)
21: [U,D]← eig(AQ, BQ) ▷ Solve small generalized eigenproblem
22: Sort eigenvalues Λ in D in descending order; reorder U accordingly
23: Xnew ← QU
24: Compute residual r ← ∥AXnew −BXnewΛ∥F
25: Compute relative residual rrel ← r

∥A∥F

26: if rrel < ε then
27: break
28: end if
29: X ← Xnew

30: end forreturn X,Λ

The TraceMin algorithm computes a few of the smallest eigenvalues by reducing

the generalized Rayleigh quotient (X
TAX

XTBX
) step by step. In [18], a simultaneous

iteration method was introduced to address this problem. In each iteration, the
previous approximation Xk , which satisfies XT

k BXk = Is and XT
k AXk = Θk, is

updated with a correction term ∆k, calculated as follows:

(3.16)
min tr(Xk −∆k)

TA(Xk −∆k),

subject to XT
k B∆k = 0

for any B-orthonormal basis Xk+1 of the subspace spanned by Zk+1, we construct our
erasure-coded scheme on top of the TraceMin algorithm, as described in Algorithm 2
of [17]. In Step 1 of Algorithm 3.4, we augment the matrices A and B with erasure-
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Algorithm 3.3 Erasure-Coded Operator Application and Inversion

Require: Mode ∈ {Aop, Bop, invBop}; matrices A,E,Z, S, T,EF ; input X; faulty
indices F ; Cholesky factor G = chol(EF⊤EF, upper)

Ensure: Output Y
1: function Aop(A,Z, S,X,F)
2: Y ← AX
3: Y ← Y + Z X(F , :)
4: Y (F , :)← Y (F , :) + Z⊤X
5: Y (F , :)← Y (F , :)+ (S−Z(F , :)−Z(F , :)⊤)X(F , :) ▷ New post-failure values
6: return Y
7: end function
8: function Bop(E, T,X, F )
9: Y ← X; Y (F, :)← 0

10: Y ← Y + EX(F, :)
11: Y (F, :)← Y (F, :) + E⊤X
12: Y (F, :)← Y (F, :) + (T − E(F, :)− E(F, :)⊤)X(F, :)
13: return Y
14: end function
15: function invBop(G,E,EF,X, F )
16: Y ← X; Y (F, :)← 0
17: W ← E⊤X; V ← X(F, :) + EF⊤X(F, :)
18: Y ← Y + E (G−1W )− E (G−1V )
19: Y (F, :)← Y (F, :) + (IF + EF ) (G−1(V −W ))
20: return Y
21: end function

coded rows and columns. In the event of a fault, the system is reconstituted from the
erasure coding blocks, as outlined in Step 5 of the Algorithm 3.4. The remainder of
the implementation follows Algorithm 2 in [17].

3.5. Construction of Erasure Coding Matrix. Although in theory a Kruskal
rank of k is required to guarantee recovery from every possible fault pattern, a weaker
but more practical requirement significantly reduces computational complexity. This
approach, referred to as recovery at random in [11], assumes that faults occur ran-
domly and can be recovered with exceptionally high probability. Furthermore, this
recovery method leverages a structured sparse matrix, introducing minimal computa-
tional overhead while maintaining high efficiency.

3.6. Coding Matrix Structure. The coding matrix must be sparse to optimize
both computation and storage. To achieve this, we generate a random matrix of
dimensions n × p and arrange it in a staggered pattern to preserve the sparsity of
the erasure coding block. Specifically, we ensure that each row of size k contains p
nonzero entries, as proposed in [11] (Figure 2).

More specifically, the coding matrix E from [11] is an n × k matrix constructed
using a staggered nonzero pattern with p randomly chosen entries for each occurrence
of this pattern.[11] showed that selecting p to be larger than log k

log log k ensures that
the probability of a random set of k rows of matrix E drawn from the n × k p-

staggered distribution being linearly dependent is less than
(

e
p+1

)p+1
. Furthermore,

they demonstrated that, with high probability, the maximum number of rows (out
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Algorithm 3.4 Erasure-coded TraceMin

Input: A symmetric matrix, subspace dimension s > 0, number of erasures tolerated
k > s
Output: Θ(eigenvalues), X(eigenvectors)

1: Generate the sparse coding matrix E which can tolerate up to k row/ column
failures using coding matrix.

2: Compute augmented blocks (Z, R) and (Q, S) for matrix A and B respectively.
3: Choose a block size s2 = 2× s and an n× s2 random matrix V1 of full rank such

that V T
1 BV1 = I.

4: for i = 1, 2, ... until convergence do
5: if Fault Occurs then
6: if Fault Occurs at a Node (say F) then
7: Replace the faulty rows and columns of A a with the Z and Z ′ blocks

and the intersection of rows and columns with block R.
8: Replace the same rows and columns of B a with the Q and Q′ blocks

and the intersection of rows and columns with block S.
9: Replacing the faulty rows and columns with coded-blocks to reconsti-

tute A′ and B′; A = A′; B = B′

10: end if
11: end if
12: Compute Wi = AVi and the interaction matrix Hi = V T

i Wi.
13: Compute the eigenpairs of (Yi; Θi) of Hi. Sort eigenvalues in ascending order

and rearrange the corresponding eigenvectors.
14: Compute the Ritz Vectors Xi = ViYi.
15: Compute the residuals Ri = AXi −BXiΘi.
16: Test for Convergence.
17: Solve the following linear system approximately via the CG.
18: AZi+1 = BXi

19: B-orthonormalize Zi+1 into Vi+1.
20: end for

of k randomly chosen rows) in matrix E that share the same nonzero structure is
approximately ln k

ln ln k (1 + o(1)).

Fig. 2: Coding Matrix

We illustrate this n × k coding ma-
trix, using the staggered non-zero pat-
tern with p non-zeros entries, in Figure 2.
We adapt this coding matrix to improve
its design for eigenvalues and eigenvec-
tors, which are more sensitive than lin-
ear systems. The erasure of critical row-
column pairs can significantly affect the
stability and convergence of the eigen-
solver. In the case of adversarial dele-
tions, the rows that contribute most to
the eigenvalues may be erased. There-
fore, assigning more weight to the rows based on their importance is crucial to preserve
the integrity of the data. We used leverage scores to assign appropriate importance
to specific rows. In addition to random coding schemes, we also evaluated Leverage
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Score-weighted Coding, as described below.

4. Experimental Results. We present detailed experimental validation of our
erasure-coded fault-tolerant TraceMin eigensolver on both dense and sparse bench-
mark datasets described in Table 1. The goal of these experiments is to demonstrate
the the stability and robustness of our approach. All methods and plots are imple-
mented in MATLAB on an Apple M1 Pro with 8 cores with 16 GB RAM.

Type Dataset Dims. Nonzeros Description

Dense

MNIST - Train 15K×15K 225M Training Dataset
MNIST - Test 10K×10K 100M Test Dataset
CIFAR-10 - Train 15K×15K 225M Training Dataset
CIFAR-10 - Test 10K×10K 225M Test Dataset

Sparse

bcsstk17 11K×11K 429K Stiffness Matrix - Elevated Pressure Vessel
bcsstk25 15K×15K 252K Stiffness Matrix - 76 Story Skyscraper
gyro 17K×17K 1M Model Reduction Problem
msc23052 23K×23K 1.15M MSC/NASTRAN Shock Problem
cbuckle 14K×14K 677K Cylindrical Shell Stiffness Matrix
Pres Poisson 15K×15K 716K Computational Fluid Dynamics Problem
jnlbrng1 40K×40K 199K Quadratic Journal Bearing Problem
torsion1 40K×40K 198K Optimization Problem

Table 1: Benchmark Datasets

4.1. Power Method vs TraceMin. We compare the performance results of
the Power Iteration Method and TraceMin across various sparse and dense datasets,
as summarized in Table 1. Two sets of experiments are conducted to analyze the
performance impact: (1) as the problem size increases and (2) as the subspace size
expands.

As the problem size increases, the runtime is expected to grow. However, it is
crucial to compare the two methods to quantify their performance impact, enabling
us to identify the most efficient approach for computing eigenvalues. Additionally,
this comparison helps evaluate the overhead introduced by erasure coding relative to
the best-performing method.
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(a) Iterations (b) Timing

Fig. 3: MNIST Train Dataset with 0.1% Erased

Figures 3a and 3b compare the convergence behavior and computational cost of
the TraceMin and Power Method algorithms under both no-error and single-
fault scenarios for varying problem sizes on the MNIST dataset.

Figure 3b clearly demonstrates that while erasure coding introduces some over-
head for both the Power Method and TraceMin, the TraceMin algorithm consistently
outperforms the Power Method, achieving significantly faster runtimes—often by an
order of magnitude—across all matrix sizes. Although the runtime of both methods in-
creases with problem size, the performance degradation is far more pronounced for the
Power Method. The Single Erasure cases for both algorithms exhibit higher runtimes
than their no-error counterparts due to the additional fill-in introduced by erasure cod-
ing—nonzero coding rows and columns that increase the effective matrix density and,
consequently, the computational cost per iteration. Overall, TraceMin demonstrates
superior scalability and robustness to erasures, whereas the Power Method shows a
steeper increase in both runtime and iteration count, underscoring its inefficiency for
large-scale or fault-tolerant eigenvalue computations.

(a) MNIST (b) bcsstk17

Fig. 4: Timing Breakdown
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In Figure 4, the runs for Power Iteration with optimized solver (Algorithm 3.2)
and TraceMin (Algorithm 3.4) are labeled with the suffixes “PW” and “TR”, re-
spectively, while “NE” represents the “No Erasure” scenario. The figure illustrates
that in both dense matrix scenarios (e.g., MNIST) and sparse matrix scenarios (e.g.,
bcsstk17), TraceMin is significantly faster than the Power Iteration method. This
disparity arises because the solver time is substantially higher for the Power Iteration
method compared to TraceMin.

(a) Iterations (b) Timing

Fig. 5: Sparse bcsstk17 Train Dataset with 0.1% Erased

As shown in Figure 5a, the Power Method (Algorithms 3.1 and 3.1) requires
significantly more iterations to converge for sparse dataset bcsstk17 compared to
Erasure-Coded TraceMin (Algorithm 3.4), leading to a higher overall execution time,
as illustrated in Figure 5b. Furthermore, Figure 5b demonstrates that the erasure
scenario incurs a higher runtime than its no-erasure counterpart. This increase in
computational cost arises because erasure coding introduces additional fill-in in the
sparse system due to nonzero coding rows and columns, thereby increasing the time
required for each iteration and ultimately resulting in a longer end-to-end execution
time. The results clearly indicate that the TraceMin algorithm substantially outper-
forms the Power Method across all problem sizes. The runtime of TraceMin remains
consistently low and scales modestly with increasing matrix size, demonstrating its
computational efficiency and scalability. In contrast, the Power Method exhibits sig-
nificantly higher runtimes, particularly under the Single Erasure scenario, where the
cost increases sharply with problem size.

The Power Method is designed to compute the largest eigenvalue and its corre-
sponding eigenvector by using subspace iterations. As the subspace size increases, the
size of eigenvectors increases as well and hence, the computational requirements grow
significantly, making the method progressively more resource-intensive and costly to
execute.
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(a) Iterations (b) Timing

Fig. 6: Convergence for bcsstk17 Dataset for varying subspace size with 0.1% Erased

Figure 6 illustrates that as the subspace size increases, the runtime of TraceMin
remains relatively stable, whereas the Power Method becomes progressively more
expensive due to the sequential computation of eigenvalues. Furthermore, we observe
that the erasure-coded scenarios incur slightly higher runtimes than their no-erasure
counterparts, primarily because erasure coding introduces additional fill-in arising
from the added coding rows and columns.

(a) Iterations (b) Timing

Fig. 7: Convergence of Eigensolvers for gyro Dataset for varying subspace size

Similarly, as shown in Figure 7a, the Power Method requires more iterations to
converge on the gyro dataset when computing the dominant eigenvalues, resulting
in significantly higher execution times compared to TraceMin (as illustrated in Fig-
ure 7b). Since TraceMin consistently outperforms the Power Iteration method, the
remainder of this paper focuses on analyzing the overheads introduced by erasure
coding and comparing other relevant benchmark results with respect to TraceMin.

4.2. Convergence Results. We present here convergence results for covariance
matrices computed from covariance matrix based on MNIST [8] and CIFAR-10 [13]
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Train and Test datasets.

(a) Residual (b) Timing Breakdown

Fig. 8: Computing Largest Few Eigenvalue for MNIST Dataset with 0.1% Erased

Figure 8a shows that the Erasure Coded TraceMin successfully recovers from
faults and, within a few iterations, follows a residual pattern similar to its “No Era-
sure” counterparts. This indicates that Erasure-Coded TraceMin exhibits excellent
convergence characteristics for MNIST Train and Test datasets. Furthermore, as
shown in Figure 8b, Erasure Coding introduces minimal additional computational
time compared to the “No Erasure” scenario, resulting in a significantly low overhead
for the Erasure Coding scheme.

(a) Residual (b) Timing Breakdown

Fig. 9: Computing Largest Few Eigenvalue for CIFAR10 Dataset with 0.1% Erased

Figures 8 and 9 illustrate the TraceMin iteration errors for the MNIST and
CIFAR-10 training and test datasets. We observe that while the residual increases in
the event of an erasure, the Erasure-Coded TraceMin still converges efficiently without
requiring significantly more iterations. This demonstrates the excellent convergence
properties of the Erasure-Coded Eigensolver when computing the largest eigenvalues.
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Furthermore, Figure 9b highlights the minimal overhead introduced by Erasure-Coded
TraceMin, making it a highly efficient and robust choice.

(a) Residual (b) Timing Breakdown

Fig. 10: Computing Smallest Few Eigenvalue for MNIST Dataset with 1% Erased

The Figure 10 shows that at the event of failure, erasure-coded TraceMin con-
verges to its solution without taking many more iterations making the erasure coding
an obvious choice. Erasure-Coded TraceMin showing impeccable convergence when
computing smallest eigenvalues as well as shown in Figure 10.

We observe from Figure 10 that erasure-coded TraceMin recovers from 0.1% era-
sures (150 row-column pairs) of MNIST Training Dataset to compute exact eigen-pairs
(tested up to 15 largest eigen-pairs). The erasure-coded TraceMin takes less than 20%
additional iterations to converge in case of an erasure than the “No Erasure” scenario.

4.3. Multifault. We implement a Random Multifault model in which multiple
faults can occur at any point during execution. These faults are simulated using
a random number distribution, where a predefined set of iterations is selected to
simulate fault occurrences, resulting in data erasure (loss).

(a) Dense Matrix (b) Sparse Matrix

Fig. 11: Erasure Coded TraceMin in Multifault Scenario



20 MUKHERJEE, KANG, GLEICH, SAMEH, AND GRAMA

In Figure 11, we observe that Erasure-Coded TraceMin successfully computes
eigenvalues even in the presence of multiple failures, requiring only a modest increase
in iterations. This excellent convergence behavior remains consistent across both
sparse and dense datasets. To demonstrate the generalizability of our Erasure-Coded
scheme, we select a representative set of dense and sparse datasets. Furthermore,
Figure 11a shows that Erasure-Coded TraceMin requires significantly fewer iterations
than the product of the number of faults and the iterations needed by TraceMin in the
“No Erasure” scenario. In other words, Erasure Coding imposes substantially lower
overhead compared to restarting the solver in the event of multiple failures.

5. Conclusion. In this work, we introduce a novel erasure-coded, fault-tolerant
eigenvalue solver, establishing its correctness and convergence properties. Through
extensive evaluations, we demonstrate that our solver incurs minimal overhead across
different fault types while maintaining excellent convergence behavior. Our approach
exhibits strong robustness and performance across various fault rates and standard
benchmark datasets, highlighting its effectiveness in real-world scenarios. By enabling
reliable eigenvalue computations in faulty environments, our methods provide a crucial
computational foundation for a wide range of scientific applications where resilience
and efficiency are paramount.
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